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The paper presents a multidimensional model for nonlinear Markovian random walks that generalizes the
one we developed previously �I. Lubashevsky, R. Friedrich, and A. Heuer, Phys. Rev. E 79, 011110 �2009�� in
order to describe the Lévy-type stochastic processes in terms of continuous trajectories of walker motion. This
approach may open a way to treat Lévy flights or Lévy random walks in inhomogeneous media or systems with
boundaries in the future. The proposed model assumes the velocity of a wandering particle to be affected by a
linear friction and a nonlinear Langevin force whose intensity is proportional to the magnitude of the velocity
for its large values. Based on the singular perturbation technique, the corresponding Fokker-Planck equation is
analyzed and the relationship between the system parameters and the Lévy exponent is found. Following
actually the previous paper we demonstrate also that anomalously long displacements of the wandering particle
are caused by extremely large fluctuations in the particle velocity whose duration is determined by the system
parameters rather than the duration of the observation interval. In this way we overcome the problem of
ascribing to Lévy random-walk non-Markov properties.
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I. INTRODUCTION

There is a wide class of physical systems, where transport
phenomena exhibit anomalous behavior of the Lévy type,
also called superdiffusion �for a review, see, e.g., Ref. �1��.
For such processes a variable x describing, in particular, the
spatial displacement of a wandering particle in the
N-dimensional space RN during a time interval t is charac-
terized by some scale ��t� increasing with time t as ��t�
� t1/�, where the parameter � meets the inequality ��2. In
addition, the distribution function P�x , t� of the particle dis-
placement exhibits the asymptotic behavior ln�P�x , t���
−��t�� / �x�N+� for �x����t�.

In particular, it is the case for the motion of tracer par-
ticles in turbulent flows �2�, the diffusion of particles in ran-
dom media �3�, the human travel behavior and the spreading
of epidemics �4�, or the economic time series in finance �5�.
Recently, there has been a great deal of research about su-
perdiffusion. It includes, in particular, a rather general analy-
sis of the Langevin equation with Lévy noise �e.g., Ref. �6��
and the form of the corresponding Fokker-Planck equations
�7–10�, description of anomalous diffusion with power-law
distributions of spatial and temporal steps �11,12�, Lévy
flights in heterogeneous media �13–15� and in external fields
�16,17�, constructing the Fokker-Planck equation for Lévy-
type processes in nonhomogeneous media �18–20�, first pas-
sage time analysis and escaping problem for Lévy flights
�21–29�, as well as processing experimental data for detect-
ing the Lévy-type behavior �30�. Besides, we note an attempt
to consider Lévy flights in bounded systems �e.g., Refs.
�31,32� and review �1�� introducing the notion of Lévy walks
within the model of coupled continuous-time random walks
�e.g., �33� and references therein�. This model considers a
collection of random discrete steps ��x ,�t� in space and time
as well and then introduces the notion of the velocity v

ª�x /dt for motion of a walker along a straight line connect-
ing the initial and the terminal points of one step. In this way
it actually converts the discrete representation of a Lévy-type
random process into continuous trajectories. Unfortunately,
these trajectories are not rigorously Markovian, which is due
to deterministic motion of the walker along the straight frag-
ments. The Markovian model at hand also deals with con-
tinuous trajectories, which will be referred to as Markovian
Lévy walks or just Lévy walks for short.

Previously, we developed a one-dimensional �1D� model
that generates continuous Markovian trajectories following
the Lévy statistics �34�. It uses Gaussian multiplicative noise
for the time evolution of the velocity. The spatial dynamics
naturally follows from this. It should be pointed out that a
first step in this direction can be found in Refs. �35,36�. For
a fixed time scale �t we can recover the standard behavior of
Lévy-type processes. However, we have full locality in the
sense that a trajectory can be determined with any desired
resolution. In other words, the developed model proposes a
microscopic implementation of the Lévy-type processes
characterized by an arbitrary small time scale � that can be
chosen beforehand. When running time exceeds essentially
this microscopic time scale, t��, the corresponding random
walks are described by the Lévy distribution.

The purpose of the present paper is, first, to generalize the
developed one-dimensional model to multidimensional case
and, second, to obtain the rigorous results using an original
singular perturbation technique. The previous paper �34� was
actually devoted to the formulation of the problem at hand
and the qualitative explanation of its main properties using
numerical simulation. In the present paper the one-
dimensional model is also analyzed in detail as a specific
limit case and the corresponding results just declared previ-
ously are obtained in a rigorous way. The approach to be
developed may open in the future a way to treat Lévy flights
or Lévy random walks in inhomogeneous media or systems
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with boundaries including boundaries of complex geometry.
Besides, in the analyzed model no external force field is
assumed to act in the given system; its generalization about
factors endowing random walks with local asymmetry will
be developed somewhere else.

II. STOCHASTIC SYSTEM AND THE GOVERNING
EQUATIONS

We consider continuous random walks in the Euclidean
N-dimensional space RN governed by the following equa-
tions:

dxi

dt
= vi, �1�

dvi

dt
= −

�N + ��
�

vi +	2

�
g�v� � �i�t� , �2�

for i=1,2 , . . . ,N. Here, x= �x1,x2 , . . . ,xN� is the point of RN,
the vector v= �v1,v2 , . . . ,vN� is the current particle velocity,
and the collection of mutually independent random compo-
nents ��i�t��i=1

i=N of white Gaussian noise such that


�i�t�� = 0, 
�i�t��i��t��� = �ii���t − t�� �3�

represents the Langevin forces with the amplitude

g�v� = 	va
2 + v2. �4�

The Langevin equation �2� is written in the Hänggi-
Klimontovich form �37–39�, which is indicated by the aster-
isk. The dimensionless coefficient ��0, the time scale �,
and the characteristic velocity va measuring the intensity of
the additive components of the Langevin forces are the sys-
tem parameters. As will be seen below, the value � specifies
time scales t�� on that the particle losses memory about its
initial velocity, and the random walks exhibit the Lévy-type
behavior provided

1 � �� 2. �5�

Exactly this region of � will be considered below. The scalar
form of the coefficient � and the Langevin force intensity �4�
actually implement the adopted assumption about the isot-
ropy of the system at hand. For N=1 the present model co-
incides with the one developed in Ref. �34� within the
replacement �→2�.

The proposed model actually describes a certain stochas-
tic self-acceleration of the particle motion in the v space
caused by nonlinearity of the Langevin random forces re-
flected in the dependence g�v��v for v�va. From the physi-
cal point the central question that has to be addressed is the
origin of the multiplicative noise. In general multiplicative
noise in nonlinear systems far from equilibrium arises quite
naturally by projecting on physically relevant variables
eliminating fast relaxing degrees of freedom �e.g., �40��. In
addition, we note that the self-acceleration phenomenon was
experimentally observed in a number of systems such as a
fully developed turbulence �e.g., �41��. Naturally, transport
phenomena in systems with a fractal advection field can be

analyzed in the frameworks of the proposed model only at a
phenomenological level.

For the given system the distribution function P�x
−x0 ,v ,v0 , t� obeys the following Fokker-Planck equation
written in the kinetic form:

�P
�t

= �
i=1

N −
�

�xi
�viP� +

1

�

�

�vi
�g2�v�

�P
�vi

+ �N + ��viP��
�6�

subjected to the initial condition at t=0

P�x − x0,v,v,0� = ��r − r0���v − v0� , �7�

where, in addition, the system translation invariance with
respect to the variable x is taken into account explicitly.

Essence of the proposed description

Let us discuss the core idea of the mathematical descrip-
tion of the Lévy-type random walks within the continuous-
time Markovian process. In the general form the correspond-
ing Fokker-Planck equation �6� can be rewritten as

�P
�t

= �− v · �x + L̂v�P �8�

where the operator L̂v acting on the variable v only is given
by the second term on the right-hand side of expression �6�.
Since our analysis is confined to the long-time dynamics of
the variables x, the solution P of this equation is sought in
the form of the expansion

P = �
	


	�v,�x�f	�x,t� �9�

over the eigenfunctions 
	�v ,�x�, matching the suitably de-
fined eigenvectors 	��x� of the linear eigenvalue problem

	��x��v,�x� = �− v · �x + L̂v�
	�v,�x� , �10�

where the operator �x is treated as some formal parameter.
We expect that the long-time dynamics will be described
only by a few terms of such expansion. These eigenfunctions
are assumed to be complete and form a basis, which is jus-
tified as will be seen below. Furthermore, according to the
general properties of such random walks, the zeroth approxi-
mation of the eigenvalue problem �10� determined by the
replacement �x→0 describes the velocity distribution. In
this case the corresponding quantities ��ª	��x→0�� are
eigenvalues of the Fokker-Planck operator Lv. In the collec-
tion ��� there is one zero eigenvalue denoted by �0=0 and
the related eigenfunction is the stationary distribution of the
velocity v. All the other eigenvalues � have negative real
parts, so that the corresponding eigenvectors describe decay-
ing deviations from the stationary distribution.

Inserting ansatz �9� into the Fokker-Planck equation �8�
and separating terms with different eigenfunctions, we obtain
the governing equations for the coefficients f	�x , t�
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� f	�x,t�
�t

= 	��x�f	�x,t� . �11�

The quantities f	�x , t� except for the one matching the eigen-
value 	0��x� originating from �0=0 decay in time rather fast
due to the fact that the corresponding eigenvalues ��0 of
the zeroth approximation are negative and split from zero by
a finite gap. So the long-time dynamics of the random vari-
able x is governed by a generalized diffusion equation

� f0�x,t�
�t

= 	0��x�f0�x,t� . �12�

It is the standard diffusion equation if the eigenvalue 	0��x�
is an analytical function of the operator �x. When the func-
tional 	0��x� is nonanalytical, equation �12� describes an
anomalous diffusion. The purpose of the present work is to
demonstrate that the nonanalytical behavior of the eigen-
value 	0��x� becomes possible when the second moment of
the stationary velocity distribution corresponding to the
Fokker-Planck operator Lv diverges.

III. VELOCITY DISTRIBUTION

It is the statistical properties of the particle velocity v that
are responsible for the Lévy-type dynamics of the given par-
ticle. So the present section is devoted to their individual
analysis. It should qualitatively explain the results to be ob-
tained below and elucidate the mechanism via which the
Lévy-type process arises.

The distribution of particle velocity is specified by the
partial distribution function

Pv�v,v0,t� = �
RN

dx P�x − x0,v,v0,t� �13�

obeying the reduced Fokker-Planck equation

�
�Pv

�t
= �

i=1

N
�

�vi
�g2�v�

�Pv

�vi
+ �N + ��viPv� �14�

with the initial condition

Pv�v,v,0� = ��v − v0� . �15�

These expressions stem directly from Eq. �6� and the initial
condition �7� after integrating them over RN.

Below in this section the velocity extremum distribution
will be analyzed based on the first passage time problem. For
this purpose we need another equation governing the veloc-
ity distribution Pv�v ,v0 , t� and acting on the initial velocity
v0. Namely, it is the following backward Fokker-Planck
equation of the Îto type:

�
�Pv

�t
= �

i=1

N �g2�v0�
�2Pv

�v0,i
2 − �N + � − 2�v0,i

�Pv

�v0,i
� �16�

conjugated with the forward Fokker-Planck equation �14� of
the Hänggi-Klimontovich type and subjected to the same ini-
tial condition �15� �see, e.g., Ref. �40��.

A. Stationary distribution

Equation �14� admits the stationary solution Pv
st�v� obey-

ing the condition of zero value probability flux

g2�v�
�Pv

st

�vi
+ �N + ��viPv

st = 0 �17�

and the normalization to unity

�
RN

dv Pv
st�v� = 1. �18�

Equation �17� and condition �18� directly yield

Pv
st�v� =

���N + ��/2�
N/2���/2�

va
�

�g�v��N+� , �19�

where ��¯ � is the gamma function. It should be noted that
expression �17� reflects the fact that the given random pro-
cess admits the detailed balance with respect to the particle
velocity treated individually. For the exponent � belonging
to interval �5�, the first moment of the velocity magnitude
v= �v� converges whereas the second one diverges.

The found expression �19� for the velocity distribution
actually indicates that the particle displacement �r�v�t in
the space RN during some time interval �t is likely to exhibit
also a similar power-law distribution typical for the Lévy-
type random processes. It should be noted that the diver-
gence exhibited by the second moment of the velocity v for
the distribution function �19� and that of the particle dis-
placement �r for Lévy flights are of the same level of ide-
alization. In the real systems these moments must be finite,
which can be allowed for by truncating the corresponding
distributions. It can be shown that the truncation of the ve-
locity distribution gives rise to the same effect for the par-
ticle displacement, which, however, is beyond the present
analysis and worthy of an individual investigation.

B. Moment dynamics

The Lévy flights and, partly, the Lévy random walks are
characterized by mutually independent succeeding steps in
the particle displacement. This section analyzing the dynam-
ics of velocity moments illustrates us that the proposed
model does exhibit the loss of correlation in the particle ve-
locity on time scales exceeding the value �. Thereby, the
partition of a particle trajectory into segments of duration
�t�� really can be regarded as a sequence of independent
particle jumps.

In order to analyze the time dependence of the velocity
moments, Eq. �14� is multiplied, at first, with a general func-
tion ��v� and integrated over all the possible values of the
particle velocity. In this way we get the equality

�
d
��

dt
=�g2�v��

i=1

N
�2�

�vi
2� − �� + N − 2���

i=1

N

vi
��

�vi
� ,

where the symbol 
¯ � means the standard averaging proce-
dure, namely,
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 ¯ � = �
RN

dv� ¯ �Pv�v,v0,t� .

Then setting ��v�=vi, �v�, viv j �i� j�, and v2 the obtained
equation is converted into the governing equations for the
corresponding velocity moments

�
d
vi�

dt
= − �N + � − 2�
vi� , �20�

�
d
�v��

dt
= − �� − 1�
�v�� + RN�t� , �21�

where

RN�t� = �2va
2Pv�0,t� for N = 1

�N − 1�va
2� 1

�v�� for N � 1, �
�

2

d
viv j�
dt

= − �N + � − 2�
viv j� for i � j , �22�

�

2

d
v2�
dt

= �2 − ��
v2� + Nva
2. �23�

According to Eqs. �20� and �22�, on time scales about � the
particle forgets the direction of its initial motion and the
motion along different axes becomes independent. Equation
�21� demonstrates the fact that the first moment of the veloc-
ity v remains bounded during the system motion and attains
its equilibrium value at the same time scales. This feature
which will be used further in analyzing the spectral proper-
ties of Eq. �6�. Finally, Eq. �23� shows us that the system has
to get its stationary state on temporal scales actually exceed-
ing the parameter � independently of the initial velocity.

C. Velocity maximum distribution

Previously �34� we claimed and justified numerically the
fact that the Lévy-type behavior of the analyzed random
walks in the 1D case on time scales t�� is caused by the
properties of extreme fluctuations in the particle velocity.
Namely, an anomalously long displacement of the particle
during time interval t is approximately determined by its
motion during the spike in the velocity fluctuations with the
maximal amplitude. We will substantiate this statement also
in the general case comparing the results of the present sec-
tion devoted to the maximum statistics of the given random
walks and the distribution function of particle spatial dis-
placements to that obtained further.

Let us consider the first passage time problem for the
model at hand. The probability F�v0 ,� , t� for the particle
with initial velocity v0 such that �v0��� to reach the sphere
�v�=� in the velocity space for the first time at the instant t is
directly described by the backward Fokker-Planck equation
�16�. In particular its Laplace transform

FL�v0,�,s� = �
0

�

dt e−stF�v0,�,t�

obeys the equation �see, e.g., �40��

�sFL = �
i=1

N �g2�v0�
�2FL

�v0,i
2 − �N + � − 2�v0,i

�FL

�v0,i
� �24�

subjected to the boundary condition

FL�v0,�,s��v0=� = 1. �25�

Due to the symmetry of problems �24� and �25� its solution
FL�v0 ,� ,s� is a symmetrical function of the argument v0 and
can be treated as a function FL�v0 ,� ,s� of the magnitude

v0 ª ��
i=1

N

v0,i
2 �1/2

.

In this terms Eq. �24� can be rewritten as

�sFL = g2�v0�� �2FL

�v0
2 +

�N − 1�
v0

�FL

�v0
� − �N + � − 2�v0

�FL

�v0
,

�26�

where the function g2�v0� is given by formula �4�.
The introduced first passage time probability is necessary

to analyze the velocity maximum distribution. Namely, we
need the probability ��v0 ,� , t� for the velocity pattern v�t�
originating from the point v0 such that v0�� to the get the
maximum �v�=� during the time interval t is related to the
probability F�v0 ,� , t� by the following expression �42�:

��v0,�,t� = −
�

��
�

0

t

dt� F�v0,�,t�� �27�

or for the Laplace transforms

�L�v0,�,s� = −
1

s

�

��
FL�v0,�,s� . �28�

So the desired probability ��v0 ,� , t�=��v0 ,� , t� as well as
its Laplace transform actually depends on the magnitude v0
of the vector v0 rather then on its components individually.

To examine the characteristic properties of the first pas-
sage time statistics, let us consider the limit case s��1 and
��va. Under these conditions in agreement with the results
to be obtained, we can regard the function FL�v0 ,� ,s� to be
approximately constant FL�v0 ,� ,s��F0�� ,s� inside some
neighborhood Q0 of the origin, v0=0, whose thickness is
much larger than va. In particular, for s→0 it is the sphere
�v��� itself and F0�� ,s�=1 by virtue of Eq. �25�. Within the
neighborhood Q0, Eq. �26� can be integrated directly with
respect to the formal variable f�v0�ª�FL /�v0 using the stan-
dard parameter-variation method. In this way taking into ac-
count that f�0�=0 due to the system symmetry we obtain the
expression
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�FL�v0,�,s�
�v0

�
�s

va
F0��,s��v0

2

va
2 + 1��N+�−2�/2�va

v0
�N−1

��
0

v0/va �N−1d�

��2 + 1��N+��/2 �29�

and for v0�va

�FL�v0,�,s�
�v0

� �sF0��,s�
��N

2
����

2
�

2��N + �

2
�

v0
�−1

va
� . �30�

Expression �30�, first, enables us to estimate the size �̄L�s� of
the domain Q0. In fact, inside the domain Q0 the inequality

F0��,s� � v0
�FL�v0,�,s�

�v0
⇒ �s

v0
�

va
� � 1

has to hold, which allows us to set

�̄L�s� � � 1

�s
�1/�

va � v0 �31�

or converting to the time dependence

�̄�t� = � t

�
�1/�

va � v0. �32�

So the characteristic velocity scale characterizing the first
passage time probability and aggregating its time depen-

dence is �̄�t�.
Second, in the case ���̄L�s� there is a spherical layer

va�v0��̄�t� �for N=1 it is a couple of domains� wherein
the equality FL�v0 ,� ,s��F0�� ,s� holds, whereas the deriva-
tive �FL /�v0 scales with v0 as �FL /�v0�v0

�−1. This
asymptotic behavior can be obtained also analyzing the so-
lution of Eq. �24� for �v0��va, where g2�v0��v0

2. In this case
Eq. �26� admits two solutions of the form

FL�v0,�,s� � v0
g1,2

with

g1 � �, g2 � −
�s

�
. �33�

The second solution is relevant to the function FL�v0 ,� ,s�
only within the crossover from FL�v0 ,� ,s��v0

� to
FL�v0 ,� ,s��F0�� ,s� and even in this region, i.e., v0

��̄�t� the derivative �FL /�v0 is determined by its asymptot-

ics FL�v0 ,� ,s��v0
�. For larger values of v0, i.e., v0��̄�t�,

the first passage time distribution is given by the expression

FL�v0,�,s� � �v0

�
�� �34�

taking into account the boundary condition �25�. So we can
write

�FL�v0,�,s�
�v0

� �
v0
�−1

�� �35�

also for v0��̄�t�.
Expressions �30� and �35� describe the same asymptotic

behavior of the function FL�v0 ,� ,s�. Thereby we can “glue”
them together, obtaining the expression

F0��,s� =

2���N + �

2
�

��N

2
����

2
�

1

�s
�va

�
��, �36�

which holds in the limit ���̄L�s�. It should be noted that
this procedure is the kernel of the singular perturbation tech-
nique which will be also used below.

Expression �36� immediately gives us the desired formula
for the maximum distribution �L�v0 ,� ,s�. Namely, by virtue

of Eq. �28�, for v0��̄L�s� and ���̄L�s�, we have

�L�v0,�,s� =

2�2��N + �

2
�

��N

2
����

2
�

1

�s2

va
�

��+1 . �37�

Then restoring the time dependence of the extremum distri-
bution from its Laplace transform, the asymptotic behavior

for ���̄�t�, we get

��v0,�,t� =

2�2��N + �

2
�

��N

2
����

2
�

t

�

va
�

��+1 . �38�

Finalizing the present section it is possible to draw the con-

clusion that for v0��̄�t� the maximum velocity distribution
is described by a certain function

��v0,�,t� =
1

�̄�t�
�0� �

�̄�t�
� �39�

with the asymptotics

�0��� =

2�2��N + �

2
�

��N

2
����

2
�

1

��+1 . �40�

Here, the velocity scale �̄�t� is given by expression �32�. We
remind that distribution �39� describes the magnitude of the
velocity maximum attained during time interval t. For v0

��̄�t� all the directions of particle motion are equivalent. So
for a multidimensional space, N�1, the probability density
of the maximum velocity attained during the time interval t
being equal to � is given by the function
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�̃�v0,�,t� =
1

SN
��v0, ���,t� , �41�

where SN is the area of the sphere of radius ��� in RN

SN =
2N/2���N−1

��N

2
� .

In 1D space this sphere is degenerated into two points ��,
so the corresponding probability is

�̃�v0, ��,t� = 1
2��v0,�,t� �42�

because of the symmetry of the velocity fluctuations.

IV. GENERATING FUNCTION

A. General relations

The present section formally substantiates that models �1�
and �2� do exhibit the Lévy-type behavior on time scales t
��. For this purpose let us analyze the properties of the
generating function introduced as follows:

G��,k,t� ª �exp i

va�
��x − x0�� + �vk��� , �43�

where the averaging operator 
¯ � used is specified by the
expression


 ¯ � = �
RN�RN

dxdv� ¯ �P�x − x0,v,v0,t� �44�

and the wave vectors � and k are dimensionless variables.
Then by virtue of the Fokker-Planck equation �6� and the
initial condition �7�, the generating function obeys the gov-
erning equation

�
�G
�t

= �
i=1

N  �

�ki
�k2

�G
�ki

� + ��i − �N + ��ki�
�G
�ki
� − k2G

�45�

subjected to the initial condition at t=0

G��,k,0� = exp i

va
v0k� . �46�

At the origin k=0 and �=0, function �43� meets also the
condition

G�0,0,t� = 1, �47�

which follows directly from the normalization of the distri-
bution function to unity. In deriving Eq. �45� the following
correspondences between the operators acting in the spaces
�x ,v� and �� ,k�:

�

�xi
↔ −

i

va�
�i,

�

�vi
↔ −

i

va
�i, vi ↔ − iva

�

�ki

as well as the commutation rule

�

�ki
kj − kj

�

�ki
= �ij

have been used.
The argument � enters Eq. �45� as a parameter; the given

equation does not contain any differential operator acting
upon the function G�� ,k , t� via the argument �. This feature
enables us to raise a question about the spectrum properties
of Eq. �45�, where the variable � is treated as a parameter
given beforehand. Then the desired eigenfunctions and their
eigenvalues

�
	�k��,���, �	��,��� �48�

obey the equation

− 	
	 = �
i=1

N  �

�ki
�k2�
	

�ki
� + ��i − �N + ��ki�

�
	

�ki
�

− k2
	, �49�

where the symbol � denotes the complete collection of the
eigenfunction parameters for a fixed value of �. We point out
that the time dependence corresponding to these functions
has been chosen in the form exp�−	t /��, which explains the
minus sign on the left-hand side of Eq. �45� and dimension-
less type of the eigenvalues �	�� ,���.

In these terms the solution of Eq. �45� can be written as
the series

G��,k,t�v0� = �
�

f��,��v0�
	�k��,��exp− 	��,��
t

�
� ,

�50�

where �f�� ,� �x0 ,v0�� are the coefficients of expansion �50�
which meet the equality

�
�

f��,��v0�
	�k��,�� = exp i

va
v0k� �51�

following from the initial condition �46�. In agreement with
the results to be obtained below, the spectrum of the Fokker-
Planck equation �45� is bounded from below by a nondegen-
erate minimal eigenvalue 	min����0, whereas the other ei-
genvalues are separated from it by a final gap. So, as time
goes on and the inequality t�� holds, the term correspond-
ing to the minimal eigenvalue will be dominant and sum �50�
is reduced to

G��,k,t� = fmin���v0�
min�k���exp− 	min���
t

�
� �52�

on large time scales. Here, 
min�k ��� is the eigenfunction
matching the eigenvalue 	min.

Whence, several consequences follow. First, the general
identity �47� holds at any moment of time, thereby

	min�0� = 0. �53�

Second, on large time scales t�� the system has to “forget”
the initial velocity v0, so the expansion coefficient fmin���
does not depend on v0 and it can be aggregated into the

LUBASHEVSKY, FRIEDRICH, AND HEUER PHYSICAL REVIEW E 80, 031148 �2009�

031148-6



function 
min�k ���. In this way the initial condition �51�
reads


min�k��� + �
�,	�	min

f��,��v0�
	�k��,�� = exp i

va
v0k� .

�54�

The terms in sum �54� with 	�	min determine the de-
pendence of the generating function G�� ,k , t �v0� on the ini-
tial velocity v0 and, thus, the corresponding coefficients
f�� ,� �v0� must depend on v0. Finding the first derivative of
both the sides of this equation with respect to v0 we have

�
�,	�	min

� f��,��v0�
�v0,i


	�k��,�� =
i

va
ki exp i

va
v0k�

�55�

and for k=0 and any value of the initial velocity v0

�
�,	�	min

� f��,��v0�
�v0,i


	�0��,�� = 0. �56�

The latter feature, third, enables us to write individually


	�0��,�� = 0, 	�	min �57�

for all the eigenfunctions except for 
min�k ���. By virtue of
Eq. �54� and condition �57�, the eigenfunction 
min�k ���
meets the equality


min�0��� = 1 �58�

at k=0.
Summarizing the aforementioned we see that on large

time scales t�� the asymptotic behavior of the given gener-
ating function is the following:

G��,k,t� = 
min�k���exp− 	min���
t

�
� , �59�

and due to Eq. �58�

G��,0,t� = exp− 	min���
t

�
� �60�

for k=0. In what follows calculating the eigenvalue 	min���
will be the main goal.

The random walks under consideration should exhibit the
Lévy-type behavior on large spatial and temporal scales, i.e.,
for �x−x0��va� and t��. This allows us to confine our
analysis to the limit of small values of �, i.e., to assume
����1 and also 	min����1. Under such conditions the spec-
trum problem �49� may be studies using perturbation tech-
nique with the term

�
i=1

N

�i
�
	

�ki
�61�

playing the role of perturbation. Leaping ahead, we note that
at the zeroth approximation in perturbation �61� the eigen-
values �	� are related to the velocity component of random
walks only although beyond it these eigenvalues contain the

information about the properties of random walks in the
complete phase space �x ,v�.

B. Zeroth approximation: Spectral properties
of the velocity distribution

The zeroth approximation of Eq. �49� in perturbation �61�
matches the case �=0, where the generating function
G�0 ,k , t� actually describes the velocity distribution as stems
from its definition �43�. Setting �=0 in the eigenvalue equa-
tion �49� we reduce it to the following:

− ��� = �
i=1

N  �

�ki
�k2���

�ki
� − �N + ��ki

���

�ki
� − k2��,

�62�

where the designations

���k��� = 
	�k�0,��, ���� = 	�0,�� �63�

have been used.
Pursuing different goals let us consider the conversion of

Eq. �62� under the replacement

���k��� = �k��n��,n�k��� �64�

for several values of the exponent �n. Leaping ahead, we
note that the purpose of case 1 is to demonstrate the com-
pleteness of the analyzed eigenfunctions, which justifies the
adopted form of the time-dependent factor in deriving Eq.
�49�, as well as to show that the analyzed eigenvectors are
real numbers. Case 2 allows us to confine our consideration
to the symmetrical eigenfunctions. Finally, based on these
results case 3 continues the present analysis.

1. Case 1: �1=(N+�) Õ2

In this case the substitution of Eq. �64� into Eq. �62�
converts it into

���,1 = − �
i=1

N
�

�ki
�k2���,1

�ki
� + �k2 +

�2 − N2

4
���,1.

�65�

The operator on the right-hand side of Eq. �65� is Hermitian
within the standard definition of scalar product. So all the
eigenvalues ��� are real numbers and the corresponding
eigenfunctions ���,n�k ���� form a basis. It should be noted
that the given conclusion coincides with the well-known
property of the Fokker-Planck equation for Markovian sys-
tems with the detailed balance �43�. In addition the eigen-
functions ��,1�k ��� can be constructed in such a way that the
identity

�
RN

dk ��,1
� �k������,1�k���� = ���� �66�

holds for all of them except for the case describing the nor-
malization of the eigenfunction �0,1�k� corresponding to the
minimal eigenvalue �min=	min�0�=0 by virtue of Eq. �53�.
We note that the latter eigenfunction matches the stationary
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distribution �19� of the particle velocity and its normalization
is determined by condition �58�.

2. Case 2: �2=(N+�−2) Õ2

In this case, Eq. �62� can be rewritten as

���,2 = − k2�
i=1

N
�2��,2

�ki
2 + �k2 +

�2 − �N − 2�2

4
���,2.

�67�

Let us split the Laplacian entering the right-hand side of
expression �67� into two parts acting either on the magnitude
kª �k� of the vector k or on its angular variables

�
i=1

N
�2

�ki
2 =

1

kN−1

�

�k
�kN−1 �

�k
� −

1

k2 L̂2, �68�

where L̂ is the angular-momentum operator. We will remind

the particular expressions of L̂2 for two- and three-
dimensional spaces

L̂N=2
2 = −

�2

��2 ,

L̂N=3
2 = −

1

sin �

�

��
�sin �

�

��
� −

1

sin2 �

�2

��2 .

In one-dimensional space the angular-momentum operator

L̂N=1
2 can be treated as the symmetry operator under the re-

flection x�−x. All the eigenfunctions ���� of the operator

L̂2 possess eigenvalues �������0� exceeding some positive
number ��0�0 of order unity, naturally, except for the func-
tion 1� not depending on the angular variables for which

L̂21�=0.
This feature enables us to confine our further analysis to

the eigenfunctions ����k ��s�� depending only on the value
k= �k�. Indeed, expression �68� enables us to rewrite Eq. �67�
as follows:

���,2 = −
1

kN−3

�

�k
�kN−1���,2

�k
� + �k2 +

�2 − �N − 2�2

4
���,2

+ L̂2��,2. �69�

Thereby in the general case any eigenfunction ���k ��� can
be written as the product of the corresponding symmetrical
eigenfunction and a certain eigenfunction of the angular-

momentum operator L̂2,

���k��s � �� = ���k��s���,

and their eigenvalues are related as

���s � �� = ���s� + ���.

So the given spectrum problem is split independently into its
analysis with respect to the symmetrical eigenfunctions and
the spectrum problem for the angular-momentum operator.

3. Case 3: �3=� Õ2

For the given value of the exponent � and the symmetri-
cal eigenfunctions ��,3

s �k ��s�, Eq. �62� is reduced to the
modified Bessel differential equation

k2d2��,3
s

dk2 + k
d��,3

s

dk
− �k2 +

�2

4
− ����,3

s = 0. �70�

Since the desired eigenfunctions should decrease as k→�,
the solution of Eq. �70� is given by the modified Bessel func-
tion of the second kind

��,3
s �k� � K��k� �71�

with the order �=	�2 /4−�, because

K��k� �	 

2k
e−k as k → � .

for any value of the parameter � �44�.
Whence it follows that, first, there are no eigenfunctions

with eigenvalues ��0. Indeed, for small values of the argu-
ment k the modified Bessel function K��k��k−� when its
order is a positive number ��0, which is the case for �
��2 /4. Under these conditions the trial function

��k� ª k�3K��k� � k−�+�/2 for k � 1

exhibits a strong divergence with k→0. Second, as it must,
the value �min=0 is the minimal eigenvalue and the given
trial function takes some finite value at k=0. The corre-
sponding eigenfunction will be analyzed in detail below.
Third, the interval 0����2 /4 does not contain any addi-
tional eigenvalue. In fact, otherwise, the trial function

��,1�k� = ��,3�k�k�3−�1 � k−N/2K��k�

would give rise to strong divergence in the normalization
condition �66�. Finally, the eigenvalues ���2 /4 form the
continuous spectrum of the given problem. The correspond-
ing eigenfunctions via the modified Bessel function of the
second kind with pure imaginary order exhibit a strong os-
cillatory behavior as k→0 and due to the preceding cofactor
k�3 meet condition �57�.

In order to construct the desired eigenfunction �min�k�
matching the minimal eigenvalue �min=0, let us make use of
the expansion of the function K��k� for small values of the
argument k,

K��k� =
����

21−�k�
�1 − � k

2
�2���1 − ��

��� + 1�
+ O�k2�� , �72�

which is justified for the order 0���1 �see, e.g., Ref. �44��.
For �=0 the order �=� /2 and the latter inequality holds due
to the adopted assumption �5� about the parameter �. Expres-
sion �64� and the obtained result �71� specify the dependence
of the eigenfunction �min�k��k�/2K�/2�k� on the argument k.
In the case under consideration the general condition �58�
reading �min�0�=0 together with asymptotics �72� enables us
to find the preceding constant. In this way the desired expres-
sion
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�min�k� =
2�2−��/2

���
2
� k�/2K�/2�k� = 1 − � k

2
����

2 − �

2
�

��2 + �

2
� + O�k2�

�73�

is got. Expression �73� finalizes the analysis of the zeroth
approximation.

Summarizing the aforementioned we draw the conclusion
that at �=0 the spectrum of the Fokker-Planck equation �45�
for the generating function �43� does contain zero eigenvalue
	min�0�=0 corresponding to eigenfunction �73�, which is
separated from higher eigenvalues by a gap equal to �2 /4 �in
units of ��. We note that the given statement is in agreement
with the conclusion about the spectrum properties for a simi-
lar stochastic process with multiplicative noise �45–47�.

C. Eigenvalue �min(�) for ���™1: Singular
perturbation technique

On time scales t�� only rather small values of the wave
vector � contribute substantially to the distribution of the
random variable x, Indeed, according to Eq. �59� or Eq. �60�
only the wave vectors � that meet the inequality

	min���
t

�
� 1

are essential. Due to 	min���→0 as �→0 �see Eq. �53�� and
the estimate 	min�1 for ����1 this inequality is converted
into �����t�1 with �t→0 as t→�. So in what follows the
inequality ����1 will be assumed to hold beforehand.

The perturbation term �61� mixes the eigenfunctions of
zeroth approximation affecting the spectrum property of the
generating function. However, in the case under consider-
ation, perturbation �61� disturbs the eigenfunction �min�k�
with �min=0 substantially only in a certain small neighbor-
hood Q� of the origin k=0 wherein �k�� ���. It stems directly
from the form of the eigenfunction �49�. Outside the neigh-
borhood Q� the eigenvalue function 
min�k ��� should prac-
tically coincide with �min�k�.

So in the space of the wave numbers � there is a spherical
layer L�

��� � �k� � 1, �74�

wherein formula �73� in the limit k�1 approximates not
only the eigenfunction �min�k� but also the eigenfunction

min�k ��� �Fig. 1�. In addition within this layer L� as well as

the neighborhood Q�, first, the two eigenvalue functions are
practically equal to unity, 
min�k ��� ,�min�k��1. Second,
any power term whose exponent exceeds ��2 �see inequal-
ity �5�� may be ignored. The latter concerns also the last term
on the right-hand side of Eq. �49�.

Keeping the aforesaid in mind and splitting the function

min�k ��� into two parts,


min�k��� = 1 − ��k��� , �75�

where ��k ����1 the eigenvalue problem under consider-
ation is reduced to solving the equation

	min = �
i=1

N  �

�ki
�k2 ��

�ki
� + ��i − �N + ��ki�

��

�ki
� �76�

subjected to the requirement of the solution exhibiting the
asymptotic behavior

��k��� � � k

2
����

2 − �

2
�

��2 + �

2
� . �77�

for ���� �k��1.

1. Scaling relations

Using the scaling transformations

ki = ����i, 	min = ����	min, ��k��� � ��������n� ,

�78�

the eigenvalue problems �76� and �77� is reduced to the
equation

	min = �
i=1

N  �

��i
��2 ��

��i
� + �ni − �N + ���i�

��

��i
� , �79�

where n= �ni� is the unit vector parallel to the wave vector �
and the asymptotic behavior �77� is converted into the as-
ymptotics

����n� � � ���
2
����

2 − �

2
�

��2 + �

2
� as ��� → � �80�

at infinity. We note that condition �80� does not describe the
real behavior of the generating function as the wave vector r
goes to infinity. It is just a simple notion of the upper bound-
ary �k��1 of the analyzed intermediate region after scaling
�78�. In some sense condition �80� glues the asymptotic be-
havior of the eigenfunction 
min�k ��� resulting from its
properties for sufficiently large values of k together with the
one stemming from small values of k, in this case, specified
by the solution of Eq. �79�. Exactly such a procedure is the
essence of the singular perturbation technique.

The eigenvalue problems �79� and �80� do not contain any
external parameter, enabling us to expect that 	min is a value
about unity, 	min�1. This estimate actually is the basic re-

FIG. 1. Illustration of the singular perturbation technique in glu-
ing the asymptotics the eigenfunction 
min�k� constructed in differ-
ent limit regions of the velocity wave number k.
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sult of the present paper because it immediately leads us to
the conclusion about the scaling properties of the random
walks in the space RN that are governed by the system of
equations �1� and �2�. It should be noted that according to the
results to be obtained and the general reasons as well, the
estimate 	min�1 is rigorously justified outside a small
neighborhood of the value �=2. The case 2−��1 is singled
out by the pronounced crossover between the Lévy and
Gaussian behavior, which lies beyond the present analysis
and is worthy of individual investigations. However, before
discussing the obtained results let us find the specific values
of the eigenvalue 	min, with one-dimensional and multidi-
mensional spaces being analyzed individually.

2. One-dimensional model

For the one-dimensional space R �N=1�, Eq. �79�
becomes

	min =
d

d�
��2d�

d�
� + �1 − �1 + ����

d�

d�
. �81�

Here, we have assumed the unit vector n to be positively
directed along the � axis and omitted the index i at the vari-
able �.

Equation �81� can be solved directly with respect to the
variable d� /d� using the standard parameter-variation
method. However, this solution can exhibit a strong singular-
ity at �=0, so the regions ��0 and ��0 have to be consid-
ered separately. In this way we get for ��0

d�

d�
= ����−1exp�1

�
��C−� + 	min�

0

−1/�

��−1e−�d�� �82�

and for ��0

d�

d�
= ����−1exp�1

�
��C+� − 	min�

0

1/�

��−1e−�d�� , �83�

where the constants C�� specify the asymptotic behavior of
the derivative

d�

d�
� ����−1C�� as � → �� .

Thereby according to condition �80� that should be imposed
on the asymptotic behavior of the solution ���� and convert-
ing into the corresponding asymptotic behavior of its deriva-
tive,

C+� = − C−� =

���2 − �

2
�

2���2 + �

2
� . �84�

Solution �83� diverges as �→0 unless the equality

C+� − 	min�
0

�

��−1e−�d� = 0

holds, whence taking into account Eq. �84� we find the de-
sired expression for the eigenvalue 	min

	min =

��2 − �

2
�

2�−1���
2
�����

. �85�

In obtaining Eq. �85� the recurrence formulas for the gamma
function have been used.

3. Multidimensional model

For the multidimensional space RN �N�1� the solution of
Eq. �79� subjected to the asymptotic behavior �80� turns out
to depend only on two variables: the absolute value �ª ��� of
the wave vector � and the angular variable

�ª �
i=1

N
�ini

�
. �86�

This statement follows directly from the symmetry of Eq.
�79� and condition �80�. Using the variables �� ,��, we can
write

�

��i
=
�i

�

�

��
+

1

�2 ��ni − ��i�
�

��
,

and, thus,

�
i=1

N

�i
�

��i
= �

�

��
,

�
i=1

N

ni
�

��i
= �

�

��
+

�1 − �2�
�

�

��
,

assuming the given operators to act on functions of the argu-
ments � and � only. Then Eq. �79� can be rewritten as

	min = �2�2�

��2 − �� − 1��
��

��
+ �1 − �2�

�2�

��2

− �N − 1��
��

��
+

1

�
�1 − �2�

��

��
+ �

��

��
. �87�

Thereby in the given case the eigenvalue problem is reduced
to solving Eq. �87� subjected to condition �80� with respect
to the function ��� ,��.

The boundary �= �1 is artificial; it arises via the change
of variables �86�. So the solution should be an analytical
function of the variable �, also all the points of the closed
interval �� �−1,1�. The latter feature enables us to seek the
solution of Eq. �87� as a power series with respect to �,

���,�� = �
n=0

�

�n�n��� . �88�

Substituting Eq. �88� into Eq. �87� and gathering terms with
the same power of �, we obtain the collection of individual
equations for the components of expansion �88�, namely,

�2d2�0

d�2 − �� − 1��
d�0

d�
= − 2�2 −

1

�
�1 + 	min �89a�

and for n�1
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�2d2�n

d�2 − �� − 1��
d�n

d�
− n�N + n − 2��n

= − �n + 2��n + 1��n+2 −
�n + 1�

�
�n+1

+
�n − 1�

�
�n−1 −

d�n−1

d�
. �89b�

Let us first obtain the particular expression for the eigenvalue
	min in the limit case N�1. According to Eq. �89b� at the
leading order in the small parameter 1 /N,

�1��� =
1

N

d�0���
d�

, �90�

whereas the other components are of higher order in 1 /N. So
within the given accuracy, Eq. �89a� becomes

�2d2�0

d�2 + � 1

N�
− �� − 1���d�0

d�
= 	min. �91�

Then imposing condition �80� on Eq. �91� and using the
method of variation of parameters it is solved, giving us the
expression

d�0���
d�

= ��−1 exp 1

2N�2�� ��2 − �

2
�

2�−1���
2
�

− 2��−2�/2N�/2	min�
0

1/�2N�2�
��/2−1e−�d�� . �92�

Therefore, the function �0��� does not exhibit a singularity
as �→0 if

	min = � 1

N
��/2 4��2 − �

2
�

23�/2�2��
2
� , �93�

which gives us the desired estimate of the eigenvalue 	min at
the leading order in 1 /N. For an arbitrary value of N, system
�88� could be analyzed numerically using, for example, an
algorithm described in �48�.

V. LÉVY-TYPE DISTRIBUTION OF SPATIAL STEPS

Summarizing the results of the previous section we draw
the conclusion that the continuous-time models �1� and �2�
for the random walks governed by the given multiplicative
noise do exhibit the Lévy-type behavior on time scales ex-
ceeding essentially the parameter �. To justify this statement
in detail, we take into account the scaling relations �78� and
rewrite the generating function �60� for the particle displace-
ments in the space �x� in the form

G��,0,t� = exp− 	min����
t

�
� , �94�

which holds for t��. Introducing the distribution function
Px�x−x0 , t� of the particle displacements by the integral

Px�x − x0,t� = �
RN

dv P�x − x0,v,v0,t� , �95�

the generating function �94� can be represented as

G��,0,t� = �
RN

dx Px�x − x0,t�exp i

va�
�x − x0� · �� .

�96�

Comparing expressions �94� and �96� we see that, first, the
distribution function Px�x−x0 , t�= Px��x , t� is symmetrical,
i.e., it should depend only on the length of the displacement
vector �xª �x−x0�.

Second, it does not depend on the initial velocity v0 of the
particle; therefore, on such time scales the description of
these random walks can be confined to the spatial variables
only. So if one is not interested in a particular value of the
velocity v, then the unnecessary information contained in the
system distribution over the full phase space �x ,v� is reduced
by dealing with the partial distribution function �95� only.

The third feature is the time dependence of the spatial
scale ��t� characterizing the particle displacements during
the time interval t. The characteristic scale is such a value
��t� that after the rescaling x /��x� or correspondingly
����� the distribution function Px�x−x0 , t� or the generat-
ing function G�� ,0 , t� becomes a function of only one argu-
ment x or ��, respectively, and the value x�1 or ���1
separates the regions of different asymptotic behaviors. To
find ��t� we assume the argument of the generating function
�94� to meet the estimate �����t /���1 for values of the wave
vector � such that ���t����� / �va���1 �see formula �96��.
Whence it immediately follows that

��t� = �va��� t

�
�1/�

. �97�

Due to the adopted inequality �5�, the exponent 1 /��1 /2,
so the time dependence of the characteristic particle displace-
ment ��t� really describes a Lévy-type stochastic process.

The fourth characteristic is the asymptotic behavior ex-
hibited by the distribution Px��x , t� of the particle displace-
ments. This asymptotics matches spatial scales �x���t� and,
correspondingly, small values of the argument of the gener-
ating function �94�. Under these conditions, on one hand,
expanding expression �94� into the Taylor series and keeping
only the first two terms, we get

G��,0,t� = 1 − 	min����
t

�
.

On the other hand, expression �96� can be rewritten as
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G��,0,t� = 1 − 2�
RN

dx Px��x,t�sin2 i

va�
�x − x0� · �� ,

where the identities eiz=cos z+ i sin z and cos z=1
−2 sin2�z /2� have been used and the symmetry of the partial
distribution function Px��x , t� has been taken into account.
The comparison of the two obtained expressions with each
other enables us to write

	min����
t

�
= 2�

RN
dx Px��x,t�sin2� �x − x0� · �

2va�
� . �98�

In agreement with the results to be found below, the distri-
bution function Px��x , t� on scales �x���t� exhibits the fol-
lowing asymptotic behavior:

Px��x,t� � C
���t���

��x�N+� , �99�

where the constant C can be found using expression �98�.
Namely, asymptotics �99� enables us to rewrite expression
�98� for the one-dimensional case �N=1� as

	min����
t

�
= 4C���t����

0

� d��x�
��x�1+�sin2� ��x����

2va�
�

�100a�

and for the multidimensional case �N�1� as

	min����
t

�
= 2C���t����

0



d�

��
0

�

d��x�
�x

��x�N+�SN−1

���x sin ��sin2� ��x����cos �

2va�
� ,

�100b�

where

SN�r� =
2N/2rN−1

��N

2
�

is the surface area of the N-dimensional sphere. Calculating
integrals �100� gives us the required values of the coefficient
C for N=1

C =

� sin��
2
���2 − �

2
�

2�−1���
2
� , �101a�

where in addition expression �85� has been taken into ac-
count and for N�1

C =
2�

N/2+1	min sin��
2
���� + 2

2
���N + �

2
� .

�101b�

Formula �97� and asymptotics �99� are the characteristic fea-
tures of random walks belonging to the Lévy-type stochastic
processes.

Besides, comparing asymptotics �99� of the distribution
function Px��x , t� and asymptotics �41� of the velocity extre-
mum distribution ��v0 ,� , t�, we see that these dependencies
coincide with each other within the replacement �x= ��,
where the cofactor  �1 is a certain number of order unity.
The value � characterizes the time correlations in the velocity
fluctuations of particle motion �see formulas �20�–�23��.
Therefore, anomalously long spatial jumps of the particle on
time scales t�� can be treated as the displacements of this
particle gained within the spikes of the extremum velocity
fluctuations during the time interval t.

Governing equation of superdiffusion

According to expression �94� the generating function
Gx�� , t�ªG�� ,0 , t� obeys the following equation:

�
�Gx

�t
= − 	min����Gx. �102�

By virtue of Eq. �96� this generating function is not more
than the Fourier transform of the distribution function Px�x
−x0 , t� describing the spatial displacements of wandering
particles during the time interval t in units of va�. So return-
ing to the original spatial variables x, Eq. �102� is converted
into the following:

�Px

�t
= − !�− �x

2��/2Px. �103�

Here, the quantity

! = 	minva
���−1 �104�

can be regarded as the coefficient of superdiffusion and the
operator entering the right-hand side of this expression is the
fractional Laplacian, being an integral operator with kernel
proportional to the right-hand side of expression �99�. For
the rigorous construction of the fractional Laplacian and the
corresponding details in its possible representations, the
reader is referred, e.g., to Refs. �49,50�. Formula �104� is
actually the desired implementation of the governing Eq.
�12� for superdiffusion.

VI. CONCLUSION

Via Eqs. �1� and �2� we have presented a model, which
implements Lévy flights on a “microscopic” level. In particu-
lar this allows one to describe the trajectory, characterized by
Lévy statistics, in a continuous fashion on every given time
scale �t by choosing ���t. Indeed, fixing any small duration
�t of the Lévy walker steps, we can choose the time scale �
of the given model such that �t�� and, as a result, receive
the Lévy statistics for the corresponding spatial steps on time
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scale �t. Of course, the Langevin equation has to be updated

on a time scale �̃t��. Moreover, expressions �103� and
�104� demonstrate the equivalence of systems of given !
�va

���−1 with respect to their asymptotic behavior. Thus, all
the details of the microscopic implementation of Lévy flights
are expressed by the exponent � and the superdiffusion co-
efficient !.

In our previous work we have derived the Lévy behavior
based on the numerically derived observation that �"x���
which translates the extremal behavior of � to that of �x.
Furthermore, we have restricted to the 1D case. In contrast,
in the present work we have strictly calculated the lowest
eigenvalue of the corresponding Fokker-Planck equation and
thus the generating function for the particle displacement for
arbitrary dimension. As outlined in this work this calculation
made use of the singular perturbation technique. In particu-
lar, it is possible to prove this proportionality and, further-
more, to calculate the proportionality constant by comparing
the distribution functions �41� �or Eq. �42� for the 1D case�
and �99� with each other. Thus, this model has finally found
a mathematically strict solution.

In physical terms the nondiffusive behavior enters by the
multiplicative noise, which gives rise to a self-acceleration of
the system and is intrinsically connected to nonequilibrium
situations. More generally, the emergence of slow- and fast-
speed periods, as generated by the present model, is of cur-
rent interest in optimal random search theory and in the
analysis of animal movement patterns �see, e.g., �51,52��. In

these cases the searching phases tend to be associated with
slow speeds while relocation phases tend to be associated
with high speeds. Furthermore, the present approach can be
interpreted as a generalization of the Kramers-Fokker-Planck
equation describing the diffusion of particles, where via the
choice g=const, the noise is purely additive.

Let us reiterate the possible applications of the present
model, in particular for more than one dimension. �1� From a
numerical perspective it is possible to generate a Lévy flight
based on a straightforward simulation of the Langevin equa-

tions �2�. In the well-defined limit of small �̃t, the trajectory
can be constructed with arbitrary precision. �2� The present
approach allows the consideration of Lévy flights together
with boundary conditions or for heterogeneous media, e.g.,
by introducing a dependence of va to depend on the location
of the Lévy walker. This is possible due to the strict locality
and the Markovian behavior of our model. �3� The developed
approach also opens a way to constructing the path integrals
for the Lévy random walks based on the Wiener measure
and, then, to developing a description of nonlinear Lévy pro-
cesses in a self-consistent way.
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